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ABSTRACT

The spacing of cloud droplets observed along an approximately horizontal line through a cloud may be

analyzed using a variety of techniques to reveal structure on small scales, sometimes called clustering, if such

structure exists. A number of techniques have been applied and others have been suggested but not yet

rigorously defined and applied. In this paper techniques are studied and evaluated using synthetic droplet

spacing data. For the type of small-scale structure (clustering) modeled in this study, the most promising

analysis approach is to use a combination of the power spectrum and the fishing statistic. Standard deviations

and confidence intervals are determined for the power spectrum, the pair correlation function, and a modified

fishing statistic. The clustering index and the volume-averaged pair correlation are shown to be less usefully

normalized forms of the fishing statistic.

1. Introduction

The possibility that spatial organization of cloud

droplets caused by their inertia in turbulent flow could

lead to significant effects on clouds as a whole via more

variable droplet growth rates through competition for

the vapor, enhanced collision and coalescence, and/or

radiative effects has been discussed and debated in the

literature (Shaw et al. 1998; Pinsky and Khain 2001;

Grabowski and Vaillancourt 1999; Knyazikhin et al.

2005; Marshak et al. 2005). A number of researchers

have investigated droplet spacing in clouds using data

obtained from droplet-counting probes mounted on

aircraft (Baker 1992; Pinsky and Khain 2001; Chaumat

and Brenguier 2001; Marshak et al. 2005; Kostinski and

Shaw 2001), on a balloon (Lehmann et al. 2007), and in

a wind tunnel (Saw et al. 2008). The questions that re-

searchers have attempted to address are 1) whether

there is some organization (clustering) in excess of what

would be expected from turbulent entrainment and

mixing and 2) whether such structure has a significant

effect on cloud microphysics. Shaw et al. (2002) discuss

mathematical tools for analyzing droplet spacing data

for the purpose of investigating clustering. This paper

describes a continuation of those efforts by evaluating

various analysis techniques, both theoretically and via

synthetic data. In addition to evaluating the usefulness

of each technique, confidence intervals are determined,

making the tests more rigorous.

The techniques to be evaluated are the fishing statistic

F (Baker 1992), the technique of Marshak et al. (2005),

and three techniques discussed in Shaw et al. (2002): the

clustering index CI (Chaumat and Brenguier 2001), the

pair correlation PC, and the volume-averaged pair cor-

relation VAPC. We also evaluate the power spectrum PS.

An estimate of the power spectrum was used by Pinsky

and Khain (2001) among other techniques. All the tests,

with the exception of Marshak’s, are mathematically re-

lated and as such contain similar information. The dif-

ference is in how usefully that information is displayed

and how sensitive the method is to structure in the data.

2. Fishing statistic, clustering index, and
volume-averaged pair correlation function

The fishing statistic was developed to detect structures

in droplet concentration, derived from time series of

droplet counts, on spatial scales too small for the struc-

ture to be detected by eye. It is a hypothesis-testing

statistic that tests whether a given set of data points is

Poisson distributed and is referred to as either a ‘‘statis-

tic’’ or ‘‘test’’ throughout this manuscript. Where cloud

concentration is uniform, a series of counts per sampled

volume will be Poisson distributed. For aircraft-mounted
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probes, measurements in time are directly related to

sampled volume if the true airspeed and probe sample

area are constant. We calculate and display measured

time series of counts per sampled volume using the

distance traveled by the aircraft d as the independent

variable. The size of the distance bin used L may be

varied and is the independent variable for the hypothesis

testing statistics. Equation (1) displays the formulas for

F, CI, and VAPC as functions of L:
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where X are the NX data points of a counts-per-distance

bin (distance bin length 5 L) series. That is, a long

sample of particle counts is divided in distance bins of

length L, where X is the number of counts in each bin

and NX is the total number of bins in the sample (NX

decreases as L increases); VX is the variance of X and MX

is the mean of X. All three statistics, F, CI, and VAPC,

are based on the dispersion index (VX/MX) minus its

expected value (i.e., one) under the null hypothesis that

X are Poisson distributed. Thus, all three statistics have

expected values of zero. The differences among these

tests lie only in their normalizations. Note that F is nor-

malized by the standard deviation s of the dispersion in-

dex. This has the advantage that the statistics of F (e.g., the

probability of any certain value under the null hypothesis)

are approximately independent of L and NX, whereas for

CI and VAPC the probability of any certain value under

the null hypothesis varies greatly with L and NX.

This advantage is demonstrated with the help of syn-

thetic data and is shown in Figs. 1 and 2. Droplet spacing

data are modeled using a random number generator. In

this case the minimum L is 10 mm, the average distance

between droplets is 400 mm, the average concentration

Cave is equivalently 25 cm21, and 2 m of data are syn-

thesized (Lmax 5 2 m). Structure is built in by making

the average distance between droplets vary in alternat-

ing 1-cm blocks. In this case, the average distance be-

tween droplets was 500 and 333 mm in the alternating

blocks. Figure 1a shows the ideal time series of con-

centration that is being modeled while Fig. 1b shows one

model realization of that time series, calculated with

1-cm distance bins. Because of the randomness of small

volume observations, it is not easy to detect the structure

by eye even though the time series was calculated at the

resolution of the imposed structure and the distance bins

were aligned with the actual structure. This time series

and four additional random realizations were analyzed

via the three statistics F, CI, and VAPC. The results are

shown in Fig. 2. On each figure a dashed line represents

the value of 3s away from the expected mean under the

null hypothesis. Because of the imposed structure, all

three tests show values exceeding the 3s curve, peaking

at 0.5 cm, half the size of the alternating blocks. All

three tests are equivalent in information content; how-

ever, because of the normalization it is easier to quickly

detect that information with the fishing test (i.e., the

peak is more distinct).

FIG. 1. Synthetic droplet spacing data converted to concentration (counts per distance) time

series. (a) Actual concentration modeled, which consists of alternating constant-concentration

blocks of 1-cm length, with concentrations of 20 and 30 cm21. (b) Synthesized data sequence of

simulated measured concentrations assuming random droplet placements given the true con-

centrations in (a).
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At this point it is worth discussing a subtle point that

leads to an apparent inconsistency here and later in this

paper. Shaw et al. (2002) and Kostinski and Shaw (2001)

show that if one assumes that PC is a purely local mea-

sure of structure, then F, CI, and VAPC represent in-

tegrated effects of structure on all smaller scales since

they are related to PC by integration. They also suggest

that VAPC should be more local than F or CI, which we

find is not the case (Fig. 1) since they are all essentially

the same except for their normalizations. The subtlety is

that no measure is universally or fundamentally ‘‘the’’

local measure of structure. Any measure may be more or

less local depending on the form of the structure being

detected. Below, we show that for periodic structure the

PC is less local than F or the power spectrum. Other

forms of structure could presumably be constructed for

which the opposite is true.

3. The Marshak technique

The technique of Marshak et al. (2005) divides the

measurement period into subsections of equal size L and

counts the number N of subsections containing one or

more droplets of a given size1 R; N is therefore a function

of R and L. The data are fit to a power-law function as

N(R, L) } L�D(R), (2)

where the exponent D is a function of droplet size R.

Marshak et al. (2005) interpret the observed values of

D as follows: D(R) 5 1 implies that the droplets of size R

are Poisson distributed (i.e., not clustered), 0 , D(R) , 1

implies droplets of size R are clustered, and D(R) 5 0

is a trivial case of sparse droplets of size R (no distance

bin of size L contains more than one drop of size R);

D(R) . 1 does not occur. We will show that these in-

terpretations are incorrect and that the correct in-

terpretation is associated with analysis over regions

containing both dense and sparse cloud; D is related to

the relative fractions of dense versus sparse cloud, re-

gardless of whether the dense and sparse cloud regions

are large and adjacent or interspersed on small scales.

Using the model described in section 2 but with dif-

ferent values of Lmax and Cave, two 400-m-long segments

of data were synthesized (Lmax 5 400 m), one clustered

and one completely homogeneous. In both cases the mean

droplet spacing2 is the same, 10 cm (Cave 5 0.1 cm21).

In the clustered case the mean droplet spacing varies

between 6.7 and 20 cm (Cave 5 0.15 cm21 and 0.05 cm21,

respectively) in alternating 100-cm blocks of cloud.

Figure 3 shows the fishing statistic F and N(R, L) for

both the homogeneous data and the clustered data. Also

FIG. 2. Results of applying (a) the fishing test, (b) the clustering

index, and (c) the volume-averaged pair correlation to five different

realizations of modeled data as shown in Fig. 1. The dashed line in

each plot represents 3s from the expected value of zero under the

null hypothesis of a pure Poisson process with no concentration

variations, which also represents about the 99th percentile.

1 A size R refers to a range of sizes around the value R.
2 This spacing is as measured by an instrument traversing the

cloud and is distinct from the nearest neighbor spacing in three-

dimensional space.
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shown are power-law curves with D 5 1 and D 5 0 and

the 3s line for the fishing statistic. For the homogeneous

case the fishing statistic remains below 3, as expected at

least 99% of the time. For the clustered case the fishing

statistic greatly exceeds 3, indicating the structure. The

maximum is at 50 cm, which equals one-half the block

size, as expected. However, N(R, L) is nearly the same

for both the homogeneous and the clustered cases, fol-

lowing a power law with exponent of 21 (D 5 1) at L

substantially larger than the average interparticle spac-

ing (droplets are dense), and following a horizontal line

(D 5 0) at L substantially smaller than the average in-

terparticle spacing (sparse droplets). This demonstrates

that the technique is not effective at detecting clustering,

leaving only the question of how does a slope D between

0 and 1 come about?

A straight line on the log–log plot, indicating a power

law with slope jDj between 0 and 1, may be obtained

over a finite domain of L values by combining two

otherwise homogeneous regions side by side, one where

the droplets are dense and one where they are sparse.

An example is shown in Fig. 4, which shows N(R, L) for

a modeled period of cloud that consists of adjacent re-

gions, 100 m with a mean droplet spacing of 2.5 cm and

300 m with a mean droplet spacing of 500 cm. Except for

the large-scale structure, there is no clustering in these

synthesized data. The result is similar to that shown in

Fig. 1 of Marshak et al. (2005), which was interpreted as

implying clustering. Using the synthetic data, the slope

can be adjusted to various values between 0 and 1 by

adjusting the relative sizes of the adjacent regions.

Increasing the relative size of the sparse region compared

to the size of the dense region decreases the slope jDj.

4. Confidence intervals for the pair correlation, the
power spectrum, and the fishing statistic

Before we can evaluate the efficiency of the remaining

tests, the pair correlation and the power spectrum,

confidence intervals must be established under the null

hypothesis of random droplet placement with equal

probability everywhere. As a first step toward deter-

mining confidence intervals for the power spectrum and

pair correlation, we revisit the statistics of the fishing

test. This allows confirmation and extension of the re-

sults of Baker (1992) and makes the fishing statistic more

sensitive.

a. The fishing statistic

Baker (1992) showed that under the null hypothesis,

the basic fishing statistic has a mean value of 0 and

standard deviation s of 1. It was also found that the 99th

percentile was about at or below the value of 3. The basic

fishing statistic is not used on real data in Baker (1992) or

in the remainder of this paper. Instead we use a modified

fishing statistic, which for each L averages four F values

determined with four different starting points, equally

spaced within the first interval (i.e., at 0, L/4, L/2, 3L/4

into the series). It was mentioned in Baker (1992) that this

further reduces s and the 99th percentile values, but the

FIG. 3. Results of calculating the fishing statistic and N(R, L) for

both homogeneous and clustered model data, as described in the

text. The dashed horizontal line at F 5 3 represents 3s for the fishing

statistic under the null hypothesis, which is also about the 99%

confidence level that the null hypothesis (i.e., that the data are ho-

mogeneous) is violated. Straight lines representing power-law re-

lationships with exponents of 0 and 21 are also shown.

FIG. 4. Result of calculating N(R, L) on model data that consist

of adjacent homogenous regions of different concentration, as

described in the text. Straight lines representing power-law rela-

tionships with exponents of 21 and 20.63 are also shown.
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amount was not quantified. With the vastly improved

computing power currently available, sufficient data can

be modeled and processed to more precisely determine

these statistics. Further reduction could be obtained by

averaging more F values, up to a maximum of L since

there can be a maximum of L different starting points.

However, the computing time increases proportionally

with the number of F values calculated. Thus, averaging

four values is a good compromise.

Figure 5 shows the result of applying both the basic

fishing test and the modified test to 10 000 synthesized,

homogenous time series of 1 m length (Lmax 5 100 000

distance bins or clock ticks at 10-mm resolution) and

mean concentration Cave of 10 cm21 (0.01 per tick). The

mean, s, and 95th and 99th percentiles are shown. Even

with a mean concentration of 0.01 droplets per 10-mm

minimum-resolution distance bin (i.e., 10 cm21), there

are occurrences of more than one droplet in 10 mm.

However, droplet-counting probes cannot distinguish

such coincident events. Therefore, each time series is

modeled without coincidence (i.e., more than one droplet

in 10 mm is counted as one) as well as modeling the ideal

case, which, for comparison, allows more than one droplet

in 10 mm.

For the ideal time series and basic fishing statistic, the

mean and standard deviation are 0 and 1, respectively,

and are scale independent. The 95th and 99th percen-

tiles are somewhat scale dependent. The 95th percentile

remains below 2 for all scales. The 99th percentile re-

mains below 3 for most scales except the largest where

it exceeds 3 slightly. These results are consistent with

Baker (1992). Similarly, the results for the basic statistic

applied to noncoincident data are consistent with the

results of Baker (1992). At large and medium scales the

results are the same as for ideal data, while at small

scales all the statistics are reduced.

FIG. 5. The mean, s, and 95th and 99th percentiles of both the (left) basic and (right) modified fishing statistics

applied to 10 000 model (top) ideal and (bottom) noncoincident homogeneous time series of length 0.8 m and

10 cm21 concentration.
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The modified fishing test behaves very much the same

as the basic test except the s and percentiles are reduced.

For example, s is reduced from 1 to near 0.8. This rep-

resents an increase in sensitivity. So instead of a value of

3, which was used in Baker (1992), the value of 2.4 (about

3s) is used as the threshold for rejection of the null hy-

pothesis of homogeneous data. The 99th percentile is

generally below 2.4 for the modified test and is well below

2.4 for the small (cm) scales of interest. Thus, this lower

rejection criterion still represents better than 99% sig-

nificance. For the sake of brevity in the remainder of this

manuscript, the modified fishing test will be referred to as

the fishing test.

The results presented in the previous paragraph were

found to be independent of the synthetic data parame-

ters (i.e., Cave, and Lmax) by testing at various values of

those parameters, including specifically cases A–F of

Table 1. Only the percentiles were found to vary slightly

in case C where they increased slightly, presumably

because of the low number of total droplets in that case.

b. The power spectrum

The power spectrum is the square of the Fourier

transform, implemented in this study via the fast Fourier

transform (Cooley and Tukey 1965) applied to X(d), the

series of counts per interval at the highest resolution

possible (10 mm in our model). Dividing by the variance

of the data series normalizes the power spectrum. Under

the null hypothesis of droplets randomly placed with

equal probability everywhere, this results in an expected

value of 1 at all scales L. Here L refers to the wave-

lengths of the Fourier components rather than the size of

the distance bins as in the sections above. However, we

use the same notation since in each case L refers to the

length scale at which the particular technique is be-

ing calculated. The power spectrum is very noisy and

therefore is smoothed (averaged) using a variable width

window. The averaging window size Nwps varies depend-

ing on the value of L as

Nw
ps

5 2 floor

ffiffiffiffiffiffiffiffiffiffi
L

max

L

r !
� 1

" #
1 1, (3)

where floor represents rounding down to the nearest

integer and Lmax is the length of the data series. This

choice, while arbitrary, provides maximum resolution

where the data points are far apart and greater smoothing

where the data points are denser and thus noisier.

Figures 6 and 7 show the average result of applying the

variance normalized power spectrum to 10 000 time

series of synthetic homogeneous data, each 60 000 time

TABLE 1. The values of the relevant model parameters (Cave, Lmax) used and the pair correlation statistics (mean, s, and 95th

and 99th percentiles) calculated from 1000 random realizations for each case.

A B C D E F G H

Cave (# per tick) 0.005 0.01 0.01 0.05 0.1 0.5 1.0 5.0

Lmax (ticks) 80 000 40 000 60 000 40 000 60 000 80 000 80 000 80 000

1/(Cave

ffiffiffiffiffiffiffiffiffiffi
Lmax

p
) 0.71 0.50 0.41 0.10 0.041 0.0071 0.0035 7.1 3 1024

Mean Ideal 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Noncoincident 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

s Ideal 0.71 0.50 0.41 0.10 0.041 0.0071 0.0035 7.1 3 1024

Noncoincident 0.71 0.50 0.41 0.098 0.039 0.0054 0.0021 2.4 3 1025

95th% Ideal 1.3 0.89 0.72 0.17 0.067 0.012 0.0058 0.0012

Noncoincident 1.3 0.88 0.71 0.16 0.064 0.0089 0.0034 4.3 3 1025

99th% Ideal 2.0 1.3 1.1 0.24 0.096 0.016 0.0082 0.0016

Noncoincident 2.0 1.3 1.1 0.23 0.091 0.013 0.0048 6.4 3 1025

FIG. 6. The mean (gray line at 1), s (dashed black line also at 1),

and 95th and 99th percentiles (black lines at 3 and 4.6, respectively)

averaged over 10 000 normalized but not smoothed power spectra

of random (Poisson distributed white noise) time series of length

0.6 m and concentration 10 cm21.
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steps long (0.6 m at 10-mm resolution; i.e., Lmax 5 0.6 m

or 60 000 ticks) with a mean concentration of 0.01 events

per time step (Cave 5 10 cm21). The mean, s, and 95th

and 99th percentiles are shown in Figs. 6 and 7. Figure 6

shows the raw (normalized but not smoothed) power

spectrum results; Fig. 7 shows the smoothed power

spectrum results. The data displayed in Fig. 6 were also

averaged (smoothed) using the same variable width

window as was used for the power spectrum smoothing

(in Figs. 7 and 8), as well as being an average of 10 000

realizations, since without smoothing these data are

quite noisy, like the power spectrum itself.

For the raw power spectrum, the standard deviation is

the same as the mean (i.e., 1). The 95th percentile is 3,

and the 99th percentile is 4.6 for all L. This scale in-

dependence is a desirable characteristic in a statistic.

However, as exemplified in Fig. 8, the raw power spec-

trum is too noisy, with many occurrences of values greatly

exceeding 3s. This is expected, as there are 25 000 in-

dependent data points. The smoothed power spectrum,

while having scale dependent statistics, is well behaved

relative to the 3s curve (Fig. 8). The standard deviation of

the smoothed power spectrum equals
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Nw�1

ps

q
. For con-

sistency with the fishing test, though with slightly less

significance, 3s is used as the threshold to indicate when

the power spectrum deviates from the null hypothesis of

droplets randomly placed with equal probability every-

where.

Within the range of values tested, which includes cases

A through G of Table 1, the statistics of the power

spectrum, described above, are independent of Cave and

Lmax and also independent of whether the data are ideal

or noncoincident.

c. The pair correlation

We implement the pair correlation function [Eq. (4)]

following Eq. (12) in Shaw et al. (2002). This expression

of the pair correlation reveals its close relationship with

the autocorrelation as discussed in Shaw et al. (2002),

which in turn demonstrates its relationship to the power

spectrum, since the autocorrelation is the Fourier

transform of the power spectrum and visa versa:

h(L) 5

�
Lmax

d51
X(d)X(d 1 L)

L
max

X
2

� 1, (4)

where periodic boundary conditions are used for X(d),

the counts per distance bin, at its highest resolution

(10 mm in our models); X refers to its mean. Note that L

again refers to the distance scale of the technique, but

here it is a lag, or shift, as opposed to a Fourier com-

ponent’s wavelength or distance-bin size, as in the power

spectrum and fishing test, respectively.

We determine the statistics of the pair correlation

function in the same way as described above for the power

spectrum and the fishing statistic, by generating homog-

enous synthetic data and compiling the statistics. Like the

power spectrum, the pair correlation is noisy where the

data points become dense. Therefore, the pair correla-

tion function is smoothed (averaged) using essentially

FIG. 7. The mean, s, and 95th and 99th percentiles averaged over

10 000 normalized and smoothed power spectra of random (Pois-

son distributed white noise) time series of length 0.6 m and con-

centration 10 cm21. Also shown using the right vertical axis, as the

thin black line angling from upper left to lower right, is the width

(number of data points) of the averaging window used to smooth

the power spectra (Nwps).

FIG. 8. Normalized power spectra, both raw (gray) and smoothed

(black), for a homogeneous (white noise) time series of length

2.4 m (240 000 ticks at 10-mm resolution) with mean concentration

of 10 cm21. The 3s curves for the raw (dashed) and smoothed

(dotted) cases are also displayed.
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the same filter as for the power spectrum, with the av-

eraging window size varying as

Nw
pc

5 2 floor

ffiffiffiffiffiffiffiffiffiffi
L

L
min

s !
� 1

" #
1 1, (5)

where Lmin is the sampling resolution, which is modeled

as 10 mm in these examples.

Analogous to Figs. 6 and 7, which show statistics of the

raw and smoothed power spectrum, Figs. 9 and 10 show

the mean, s, and 95th and 99th percentiles of 1000 pair

correlations applied to synthetic homogeneous data,

each 60 000 time steps long (0.6 m at 10-mm resolution;

i.e., Lmax 5 0.6 m or 60 000 ticks), with a mean con-

centration of 0.01 events per time step (Cave 5 10 cm21),

for both the raw (Fig. 9) and smoothed (Fig. 10) pair

correlation functions. The size of the averaging (smooth-

ing) window Nwpc is also shown in Fig. 10. The mean is

zero for both the raw and smoothed pair correlation

functions, as expected for random data. The s and the

95th and 99th percentiles for the raw pair correlation, in

this case, are about 0.41, 0.72, and 1.1, respectively. At

this concentration, there is little difference between

ideal and noncoincident data. These statistics for the

pair correlation are independent of L but vary with Cave

and Lmax, as shown in Table 1, for a wide range of the

Cave–Lmax parameter space. For each case shown in

Table 1, the synthetic data are homogeneous (both ideal

and noncoincident) and the results for the raw (not

smoothed or averaged) pair correlation are shown. The

main results of these variations, summarized in Table 1

are (i) the mean of the pair correlation for this random

homogeneous data is always zero, (ii) s of the ideally

modeled data is equal to (C
ave

ffiffiffiffiffiffiffiffiffiffi
L

max

p
)�1, (iii) the 95th

percentile is always less than two standard deviations

and the 99th percentile is always less than three standard

deviations, and (iv) the noncoincident data vary only

slightly from the ideal data when Cave is small but de-

viate as Cave increases. Therefore, as long as the chance

of coincidences is low, we can use 3s with greater than

99% significance as the threshold for rejecting the null

hypothesis that droplets are randomly placed with equal

probability everywhere. For the smoothed (averaged)

pair correlation, s decreases as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nwpc

q
, so the threshold

is given as 3/(Cave

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NwpcLmax

q
).

Figure 11 shows the pair correlation function, raw and

smoothed, applied to a single model run of homoge-

neous data. This example shows the large variations of

the raw pair correlation that occasionally exceed 3s.

The smoothed pair correlation remains below 3s.

5. Evaluation of the various droplet clustering tests

The statistics of the fishing statistic, pair correlation

function, and power spectrum tests have been deter-

mined, allowing with high confidence the rejection of the

null hypothesis when a signal clearly exceeds 3s for any

of the tests. The determination of these statistics opens

the way to evaluate the relative merits of each test by

comparing the response of each test to various synthetic

inhomogeneous data.

a. Periodic structure

Figure 12 shows the results of applying all three tests

to the same synthetic data series and is typical of what is

FIG. 9. Statistics (mean, s, and 95th and 99th percentiles) com-

piled over 1000 pair correlation functions (raw not smoothed) ap-

plied to model homogeneous data as described in the text.

FIG. 10. Statistics (mean, s, and 95th and 99th percentiles) com-

piled over 1000 smoothed pair correlation functions applied to

model homogeneous data as described in the text. The thin black

line running in steps from the lower left to the upper right is the

width (Nwpc, right axis) of the averaging window used to smooth

the pair correlation function.
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found by repeated random realizations. The synthetic

data simulates alternating blocks, each 1 cm long and

homogenous, with lower, then higher concentrations,

0.7 and 1.3 cm21 respectively. The total length of the

time series is 2.4 m (i.e., there are 120 pairs of low and

high concentration blocks).

The fishing test results are as expected; a clearly sig-

nificant peak at about half the block size (0.5 cm) that

drops off steeply toward larger L and slowly toward

smaller L. The power spectrum shows a very significant

peak at 2 cm and another smaller peak at approximately

4 cm. The main peak at 2 cm is the expected signal since

that is the repetition length of the square wave. The pair

correlation shows an oscillation with many peaks ex-

ceeding 3s starting at 2 cm, as expected, since the power

spectrum has a sharp localized peak and the pair cor-

relation is essentially its Fourier transform. Thus, these

simulations show that for periodic structure, the pair

correlation test is less localized than the fishing and

power spectrum tests.

Additional runs with decreasing concentration dif-

ferences confirm what seems apparent in Fig. 12, namely

that the power spectrum is considerably more sensitive

than the fishing test and the pair correlation to this type

of structure.

b. Random vortices

The periodic model data simulations presented in the

previous section are useful but the results could be

misleading. The power spectrum is specifically good at

detecting periodicity; however, small-scale structure in

real clouds is not expected to manifest as periodic.

Therefore, another model was constructed that more

closely simulates what the inhomogeneous structure is

expected to look like if it is caused by small-scale vor-

tices, as suggested in the literature (Shaw et al. 1998).

The vortex model simulates homogenous concentration

everywhere, except that at random locations a vortex-

like structure is inserted. The vortex-like structures have

an inner block of one-half the structure’s total size, with

FIG. 11. Pair correlations, both raw (gray) and smoothed (black),

for a homogeneous (white noise) time series of length 0.4 m

(40 000 ticks at 10-mm resolution) with mean concentration of

10 cm21. The 3s curves for the raw (dashed) and smoothed (dot-

ted) cases are also displayed.

FIG. 12. The results of applying the (a) fishing statistic, (b) pair

correlation, and (c) power spectrum to a series of modeled droplet

data 2.4 m long (Lmax 5 240 000 ticks) with alternating blocks,

each 1 cm (1000 ticks) long, of higher (1.3Cave) and lower (0.7Cave)

concentration, where Cave 5 10 cm21 (0.01 per tick). Both ideal

and noncoincident data are shown for the fishing statistic, whereas

for the power spectrum and pair correlation the difference between

ideal and noncoincidence is negligible at this concentration.
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reduced concentration (RCave) and outer blocks on each

side of the inner block of size one-quarter the structure’s

total size. The outer blocks each have an enhanced

concentration [(2 2 R)Cave, where R can vary between

0 and 1].

Figure 13 shows the results of applying all three tests

to a time series produced using the vortex model. The

time series is 4 m long (Lmax 5 400 000) with Cave 5

2 cm21. The average distance between the randomly

placed structures is 25 cm and their size is 2 cm (2000

ticks) with R 5 0.25. Figure 14 shows the first 1.5 m of

the time series, showing both the ideal concentration

being modeled and the random realization, at 0.5-cm

resolution. The fishing test and power spectrum both

indicate structure at scales consistent with their char-

acteristics determined via the periodic model. That is,

the power spectrum peaks near the size of the vortex

structure (2 cm) and the fishing statistic at near one-half

the block size (i.e., between 0.25 and 0.5 cm). In this

case, there is poor indication of the structure via the pair

correlation function. This may result from the informa-

tion being spread over the domain, as it must be since

the information is still fairly localized for the power

spectrum and the two are related by the Fourier trans-

form. Further runs indicate that even without period-

icity, the power spectrum is about as sensitive as the

fishing statistic to these model data and the pair corre-

lation is much less sensitive.

c. Effect of large-scale structure

To investigate the effect of large-scale structure on the

various tests, the random vortex model was further

modified to include a large-scale structure. The large-

scale structure is imposed by making the average con-

centration of the first half of the data series lower than

the average concentration of the second half. That is, the

concentration of the first half equals SCave, while the

concentration of the second half equals (2 2 S)Cave.

FIG. 13. The results of applying the (a) fishing statistic, (b) pair

correlation, and (c) power spectrum to a series of modeled droplet

data 4 m long (Lmax 5 400 000 ticks), Cave 5 2 cm21, with ran-

domly placed vortex structures as described in the text and shown

in Fig. 14. Both ideal and noncoincident data are shown for the

fishing statistic, whereas for the power spectrum and pair correla-

tion the difference between ideal and noncoincidence is negligible.

FIG. 14. Synthetic droplet spacing data converted to concentra-

tion (counts per distance) time series. (a) The actual concentration

modeled. (b) A synthesized data sequence of simulated measured

concentrations assuming random droplet placements given the true

concentrations in (a).
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Figure 15 shows the results of applying the fishing and

power spectrum tests to three such synthetic data series

(with S 5 0.90, 0.85, and 0.80). Except for varying S, the

model parameters are fixed. The length is 10 m, the

average distance between vortices is 90 cm, and the vor-

tex size is 9 cm.

The pair correlation for these model runs is not shown

since, as shown in Fig. 13, the vortex-like structures are

FIG. 15. Comparisons of the fishing statistic and the power spectrum applied to model data that contain both

random vortices and large-scale structure as described in the text. The strength of the large-scale structure is (a),(b)

10% (S 5 0.1), (c),(d) 15% (S 5 0.15), and (e),(f) 20% (S 5 0.2). Results from noncoincident data are shown but ideal

data results are not significantly different at the concentrations modeled.
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not well revealed even in the absence of large-scale

structure. For S 5 0.90, the large-scale structure is in-

dicated by both the fishing statistic and power spectrum

but does not interfere with the detection of the small-

scale structure. For S 5 0.85, the large-scale structure is

nearly dominant while the small-scale structure remains

just barely detected, for both the fishing and power

spectrum tests. For S 5 0.80, the large-scale structure

obscures the detection of the small-scale structure. One

can see the effect of the small-scale structure using both

tests, but it is unlikely that this structure could be de-

tected without a priori knowledge of its existence. These

simulations suggest that the fishing statistic and the

power spectrum are roughly equivalent in their ability to

detect small-scale structures in the presence of a super-

imposed large-scale structure.

6. Summary, discussion, and conclusions

Homogeneous synthetic data were used to determine

the standard deviations and confidence intervals of the

fishing statistic, the power spectrum, and the pair cor-

relation function under the null hypothesis of droplets

randomly placed with equal probability everywhere.

Synthetic data containing imposed structure were used

to evaluate the usefulness of these functions as hypoth-

esis testing statistics. The three functions were examined

to determine their respective abilities to reject the null

hypothesis and detect the scale(s) of the nonrandom

structure. The results are presented within the context of

droplets observed in clouds via a rapidly moving aircraft,

since this type of simulation is applicable to typical in

situ investigations of clouds. However, this situation

may be generalized to any sequence of data that are

exponentially distributed, or equivalently, for which the

number of events per fixed interval is Poisson distrib-

uted, under the null hypothesis. For example, the pair

correlation was used to search for structure in the

spacing of raindrops by Larsen et al. (2005), and simi-

larly by Larsen (2007) to test the spacing of aerosols.

However, any process that is expected, or suspected, to

be random in time or space could be tested with the tools

described herein.

Three types of structure were modeled: a periodic

square wave, random vortices, and random vortices with

a superimposed large-scale jump. Although mathemat-

ically related, and thus containing the same information,

the three tests differ dramatically in the presentation of

information. For these types of structure, the pair cor-

relation is the least sensitive and yields the least spatial

information about the structure. For the periodic struc-

ture, the power spectrum is more sensitive than the fish-

ing statistic. For the two models with random vortices, the

fishing statistic and the power spectrum are roughly

equivalent in sensitivity, scale resolution, and detection

of small-scale structures despite a superimposed large-

scale structure, although the presentation of information

is quite different for the two tests. A practical approach

is to use both the fishing statistic and the power spectrum

to analyze the possible effects of droplet clustering that

may resemble the type of structures modeled herein. We

do not suggest abandoning the pair correlation function

entirely. Instead, the pair correlation test should be tried

as well, in the event that real structures are sufficiently

different than those modeled herein and are of such

form that the pair correlation is the more useful tool.

The clustering index and the volume-averaged pair

correlation are shown to be equivalent to the fishing

statistic but with different normalizations. The normal-

ization of the fishing statistic makes it the most practical

choice of the three for studying clustering in droplet

spacing data. The analysis presented here suggests that

the technique described by Marshak et al. (2005) is not

applicable to the investigation of clustering.
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