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ABSTRACT

Ice water content in natural clouds is an important but difficult quantity to measure. The goal of a number
of past studies was to find average relationships between the masses and lengths of ice particles to determine
ice water content from in situ data, such as those routinely recorded with two-dimensional imaging probes.
The general approach in these past studies was to measure maximum length L and mass M of a dataset of
ice crystals collected at a ground site. Linear regression analysis was performed on the logarithms of the data
to estimate an average mass-to-length relationship of the form M � �L�. Relationships were determined for
subsets of the dataset based on crystal habit (shape) as well as for the full dataset. In this study, alternative
relationships for determining mass using the additional parameters of width W, area A, and perimeter P are
explored. A 50% reduction in rms error in the determination of mass relative to using L alone is achieved
using a single parameter that is a combination of L, W, A, and P. The new parameter is designed to take
into account the shape of the ice particle without the need to classify the crystals first. An interesting result
is that, when applied to the test dataset, the same reduction in rms error is also shown to be achievable using
A alone. Using A alone facilitates the reanalysis and improvement of the determination of ice water content
from large existing datasets of two-dimensional images, because A is simply the number of occulted pixels
in the digital images. Possible sources of error in this study are investigated, as is the usefulness of first
segregating the particles into crystal habits.

1. Introduction

The ice water content (IWC) of natural clouds is a
quantity that is fundamental to several disciplines in the
atmospheric sciences, including studies of the forma-
tion of the ice phase and precipitation, radiative trans-
fer, cloud chemistry, and numerical models that include
cold cloud processes.

Airborne techniques to measure IWC vary but are
fundamentally based on two approaches. In one ap-
proach, the mass of ice in a known volume of cloudy
air is melted and then vaporized. Ice mass is related to
measurement of the ice vaporization process, either
by measuring the vapor added to the sample volume
(e.g., Twohy et al. 1997), or by measuring the latent
heats of melting and/or vaporization provided by one or
more substrates (Korolev et al. 1998). The second ap-
proach involves digital images of ice particles in a

known volume of cloudy air. The mass is related to the
shape and size of the particle images (e.g., Mason 1957;
Brown and Francis 1995; Mitchell et al. 1990, hereinaf-
ter M90).

Both approaches have inherent uncertainties. The
first approach is generally considered more direct and
accurate. For example, Heymsfield et al. (2002, herein-
after H02) used a first-approach technique to validate
their second-approach technique. The instrumentation
used to digitally record two-dimensional (2D) cloud
particle images has been readily available for the past
30 yr, for example, the cloud particle (2D-C) and pre-
cipitation particle (2D-P) probes described in Knollen-
berg (1970, 1981). As a result, there are large existing
datasets of 2D images that can be reanalyzed if im-
proved particle image–to-mass algorithms can be iden-
tified. Improvement of image-to-mass algorithms, the
major contributor to uncertainty in the second ap-
proach, is the subject of this work.

Simple power-law relationships relating mass M to
length L have been used because M and L are roughly
correlated and L is easily measured from imaging probe
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data. However, particle area A, width W, and perim-
eter1 P, as well as L, are now routinely estimated from
imaging probe data. The goal of this work is to explore
the improvement possible using this fuller set of param-
eters instead of just length alone. The applicability of
the segregation by the habit approach used by M90 is
also explored. The M90 dataset is used in this study.
Such data are rare because the mass as well as image is
needed. The original M90 dataset has been extended by
including images of crystals and their associated melted
drops that were collected in 1987, but were not pro-
cessed until now. A companion paper (Lawson and
Baker 2006) will compare the new relationships found
here with other relationships previously used in the lit-
erature.

2. Technique

The literature contains a number of size-to-mass re-
lationships based on a categorization of the particle
type and the maximum dimension of the particle (Ma-
son 1957; Bashkirova and Pershina 1964; Davis 1974;
Locatelli and Hobbs 1974; M90; Brown and Francis
1995). All of these relationships take the form

M � �L�, �1�

where M is particle mass, L is particle length, and � and
� are constants determined by linear regression. In this
study, this approach is extended using the dataset of
M90.

The data M90 dataset was originally obtained by col-
lecting ice particles falling from winter storms onto
petri dishes positioned near the surface in the Sierra
Nevada of California in 1987. The ice particles were
photographed under a microscope, melted, and the re-
sulting drops were photographed. Later, the photo-
graphic slides were analyzed to categorize the ice par-
ticles, and to measure their maximum length and the

mean diameter of the melted drops. The mass was cal-
culated assuming a hemispherical drop shape. For each
crystal category a least squares linear regression was
performed on the logarithms of M and L to create
power-law fits as in (1). There were 17 categories used
that represent much of the variety of crystal types
found in midlatitude winter storms. The crystal types
typical of high-altitude cirrus, that is, bullet rosettes and
similar spatial crystals, are not represented in this
dataset.

In this study, their work is built upon by including not
only L, but also W, A, and P in the analysis. The ad-
vantages of the new formulation are 1) improved esti-
mates of ice particle masses and 2) a single image-to-
mass relationship that translates a two-dimensional par-
ticle image to mass, without having to sort the images
into particle habits, which is often an intractable pro-
cess. Also, the M90 dataset is expanded to include crys-
tals that were collected in 1987 but were not analyzed
until now.

Figure 1 shows examples from M90 of ice particle
images and their drops after melting. A set of fifty-one
35-mm photographic slides of ice particles and associ-
ated melted drop data that were collected during the
winter of 1986/87 was obtained from Dr. Mitchell of the
Desert Research Institute. The 35-mm photographic
slides were digitally scanned and the images were pro-
cessed using an existing SPEC, Inc., software program
named CPIview, which is used to process data from
cloud particle imager (CPI) probes (Lawson et al.
2001). CPIview derives a number of parameters from
the images, including L, W, A, and P; L is the length of
the longest cord, and W is the length of the longest cord
that is perpendicular to the L cord. These parameters
are shown pictorially in Fig. 1.

M90 processed 831 of the images on the fifty-one
35-mm photographic slides. Of these 831, 630 were seg-
regated into 17 habit (shape) categories and used in
their study. For this study 549 of the 831 ice particles
and equivalent melted drop images that we could un-
ambiguously identify and process with CPIview were
selected for reanalysis. An additional 315 images that
had not been processed by M90 were processed by
SPEC personnel, bringing the total number of images
processed in this study to 864. To process additional
images it was necessary to be able to properly estimate
the masses from the drop images. To be certain that we
could accurately reproduce the technique used by M90,
we estimated diameters and masses of 21 drops from
the images M90 had analyzed and compared the esti-
mates with M90’s values. As shown in Fig. 2, our esti-
mates are very close to those of M90, thereby estab-

1 Perimeter values vary with the technique used. Therefore, a
brief description of our perimeter method follows. The first few
image processing steps involve the subtraction of the background,
using a previously captured reference frame, followed by filtration
of the image to reduce the effects of noise (using both median and
statistical filters). The resulting image is then thresholded and
binarized such that shadows (dark regions relative to the back-
ground) become the only remaining features in the image. The
outline of these features is then found by computing the custer
(Russ 1995, p. 425). A final step discriminates between outline
pixels that are inside the feature, versus ones that actually make
up the outer perimeter. Then, the perimeter is computed by de-
termining the chain code representation of the perimeter pixels
and counting orthogonal and diagonal occurrences (Russ 1995,
509–510).
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lishing confidence that we could extend the M90
dataset while maintaining experimental continuity.

Two measures were chosen with which to quantify
the improvement achieved using the additional param-
eters. These relate to two basic types of error. One type
of error is simply the difference between the masses
estimated from the drop diameters, which for simplicity
are referred to as the actual masses, and the masses
estimated using the image-to-mass relationship (1).
This will be referred to as type-I error and will be rep-
resented with the rms differences and the correlation
coefficient.2 The other error is in the robustness of the
image-to-mass relationships; or, in other words, how
accurately � was found from the limited dataset. This
will be referred to as type-II error. It is explored using
a bootstrap analysis (Efron and Tibshirani 1993). Boot-

strap methods use randomly selected subsets of the
dataset to recalculate a parameter of interest many
times, in this case �. The uncertainty in � is calculated
as the standard deviation divided by the mean of the
bootstrapped �s. This is multiplied by 100 to convert it
to a percentage.

2 The correlation coefficient R and rms error of a least squares
linear regression are directly related. The square of the correla-
tion coefficient is the fraction of the predicted variable’s variance
that is explained by the linear relationship. The rms error squared
is the remainder of that variance; rms error � [(1 � R2)Var(M)]1/2.
The figures display R2 of the least squares linear regression of the
“logarithms” of M and whatever variable is being used to predict
M. The displayed rms error, however, is calculated from the actual
and predicted values of M, not their logarithms. Thus, though still
related, the values of R2 and rms error shown in the figures are not
related by the above equation.

FIG. 2. Masses of 21 drops estimated from their diameters by
SPEC vs the same estimated by M90.

FIG. 1. Examples, from M90, of images of crystals and their drops after melting. Also
shown is an example of the CPIview-derived parameters L, W, A, and P.
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Type-I error influences how many particles must be
averaged together to obtain an acceptable estimate of
IWC, assuming the relationship is correct, on average.
Type-II error is associated with whether the image-to-
mass relationship is correct on average when extended
to other similar data.

3. Results

a. Individual parameter fits

First, each of the individual size parameters are com-
pared using the same power-law least squares linear
regression method that M90 used for L. The results are
shown in Fig. 3. It is seen that W and P predict the mass
about equally well and about 25% better than L. Area
A is by far the best single predictor, with nearly a 50%
reduction in rms error relative to use of L.

b. A combined parameter fit

Using the four individual size parameters L, W, A,
and P, we created a combined single parameter (CSP) as

CSP � AW�2L � 2W��P. �2�

The following reasoning was used to formulate this pa-
rameter: A estimates the solid part of the particle on the
2D image, W estimates its extension out of the 2D
plane, and (2L � 2W)/P reflects its decreased average
density when its perimeter is convoluted. Other formu-
lations are certainly possible. We experimented with
others but without improvement.

Because CSP is still a single parameter, it can be
applied and evaluated in the same manner as the indi-
vidual parameters shown in Fig. 3. That is, � and � were
determined by least squares linear regression on the
logarithms of M and CSP. The results of applying and
evaluating the combined single parameter are shown in
Fig. 4.

The combined single parameter does not represent
significant improvement relative to using area alone.
However, because it depends on more parameters, it
may be more likely, than A alone, to retain accuracy
when applied to new datasets that contain a wider di-
versity of particle shapes. This hypothesis is discussed
further in section 4 where errors are discussed, but ul-
timately it remains to be investigated when more data
are available.

FIG. 3. Log–log plots of mass vs each of the various individual size parameters L, W, A, and
P. The least squares regression line, equation, and correlation coefficient squared are shown
along with the rms error. The latter is calculated from the values themselves, not from their
logarithms.
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c. Another combined parameter fit

H02 also included area together with length and im-
proved IWC estimates from 2D image data for certain
crystal types. In their approach a power-law relation-
ship (�e � �A�

r ) between area ratio Ar and effective
density �e was determined for various crystal types,
where

Ar 	
A

���4�L2 and �e 	
M

���6�L3 . �3�

The mass of a crystal is then estimated from �e and its
size, if its type is known and is one for which a rela-
tionship was established. To be specific, because �e �
�A�

r by substitution we obtain

M � 6�1 
 4��1���A�L3�2�. �4�

H02 established relationships (i.e., values of � and �)
for columnar, planar, spatial rosette, side plane, and
aggregate-type ice crystals via a complex combination
of theoretical derivations based on simple ideal shapes,
the numerical modeling of more complex shapes, and
the incorporation of fits from various sets of observa-
tional data.

H02 applied the method to calculate IWCs in clouds
from in situ image data and compared the results with
a more direct measure of the ice water content. Because
the method requires habit classification and relation-
ships for each habit class, they were only able to do this
to limited datasets. Specifically, two examples of cirrus
cloud data dominated by bullet rosettes and one ex-
ample dominated by a side plane were presented. The

results in those special cases were very promising, and
the approach of predicting �e from Ar instead of M
directly from the size parameters is very appealing. To
investigate the possibility that the H02 technique would
perform as successfully when applied to a general
dataset, the H02 approach was applied to the expanded
M90 dataset without habit classification. Figure 5 shows
the result.

A least squares linear regression was performed on
the logarithms of �e and Ar. The data, the best-fit equa-
tion, the square of the correlation coefficient, and the
uncertainty in � are all shown on the figure. Masses
were then estimated. The rms error for the masses is
also shown on the figure. For this data, it does not
appear that this approach is better than predicting M
directly from the size parameters. The � uncertainty is
similar to those for CSP and the A to M fits presented
above. However, the correlation coefficient is lower,
which suggests that �e is not as predictable from Ar as M
is from A or CSP. In addition, the rms error is much
larger for the H02 method applied to the expanded
M90 dataset.

For the same dataset, the rms error for the H02
method is expected to be greater than for the CSP and
A methods. This is because for the CSP and A methods,
the mass rms error is minimized by the least squares
regression, whereas for the H02 method applied here, it
is the effective density rms differences that are mini-
mized by the least squares regression. Thus, it could be
argued that the H02 method would extend more suc-
cessfully to a different but similar dataset. To address
this possibility, a special comparison was made whereby

FIG. 4. As in Fig. 3, but for the combined single parameter
AW(2L � 2W )/P.

FIG. 5. As in Fig. 3, but the effective density is fit to the area
ratio. The rms error is still calculated from the estimated masses
vs the true masses.
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the dataset was repeatedly split into random halves. For
each split the regression fits were applied as before to
one-half of the data. The derived equations were then
applied to the other one-half of the data, and the rms
error for the predicted masses were calculated only for
this half. The average rms errors calculated this way for
the CSP case, the A case, and the H02 method applied
to the expanded M90 dataset were not significantly dif-
ferent than those reported in Figs. 3, 4, and 5 that were
calculated using the entire dataset. Therefore, the pos-
sibility that the H02 technique would perform better on
a different, but similar, dataset was addressed, and it
still does not appear to be advantageous to predict �e

from Ar, instead of M directly, from the various size
parameters.

d. Multiple parameter fits

Approaches more sophisticated than the linear re-
gression of single parameters can be applied (e.g., mul-
tivariate regressions and neural networks), but so far
we have found only very limited improvement, if any,
using these approaches. It remains to be determined
whether this is a limitation attributable to the nature of
predicting mass from 2D image information, or wheth-
er experimental errors inherent in the techniques of
M90 and this study are also responsible. However, in
section 4, evidence is presented suggesting that experi-
mental errors in this study may be significant.

e. Multiple parameter fits using habit categorization

Whereas CSP is still mathematically a single param-
eter and could thus be applied and compared in the
same way as the individual parameters (L, W, A, and
P), M90 used a different linear regression with respect
to L for each of 17 habit classes. Thus, while still using
the same technique, it is a multiparameter approach
and requires additional work to evaluate. This multipa-
rameter approach was applied and is compared with the
single-parameter approaches in Table 1. We emphasize
two points, as follows below.

One point is that segregating the data and applying

separate fits to each subset will necessarily lower the
rms error. This would be true even for random subsets.
However, the reduction of rms error achieved by ap-
plying 17 fits instead of 1 fit, while significant, is still
smaller than the reduction of rms error achieved by
using a single fit on A or CSP.

The second point addresses uncertainty in the expo-
nent, that is, the uncertainty in �, used in (1). M90
segregated the data according to shape (habit classifi-
cation) with the anticipation that each fit would be rep-
resentative of its class. However, bootstrap analysis of
the exponents (�s), shown in Table 2, indicates that the
uncertainties are too great to warrant their use, even if
routine habit classification were possible. This is be-
cause for most of the habit classes, the uncertainty in its
individual � is as great or greater than the difference
between its � and the � derived from the full (all cat-
egory) dataset.

It is worth emphasizing here that particle shape is
important. The results here show that 1) the CSP and
even A alone account for particle shape better than the
habit segregation with L alone as the predictor, and 2)
the dataset is not extensive enough to derive meaning-
ful separate relationships for each habit class repre-
sented. The later point is one reason why the habit
segregation approach was not applied using CSP or A
as predictors. The other reason is that automatic clas-
sification of crystals into habit types is a difficult, if not
intractable, problem at present. Therefore, at present,
we do not recommend the habit segregation approach.

4. Consideration of errors

Many possible sources of error could be speculated
upon in this study. The focus here is on two interrelated
but separable issues. The two issues concern mass esti-
mates from drop images and automatic estimation of
the crystal image parameters L, W, A, and P.

a. Measurement errors of mass

The experimental errors associated with the dataset
of M90, which are extended and used in this study, are

TABLE 1. A comparison of M90’s habit-conditioned results with results of three non-habit-conditioned techniques. Each technique’s
equation(s), although derived from larger datasets, was applied only to the 444 particles that were originally processed by M90,
classified as one of the 17 categories used in M90, and reprocessed by SPEC. This procedure was followed because in order to make
this comparison the particles must have been classified as a certain type (done only in M90) and also have the additional parameters
W, A, and P (via SPEC reprocessing).

Method Equation Rms error (mg) � uncertainty

Least squares (LS) fit w.r.t. L (M90) 0.021L2.0 0.0396 2.7%
17 habit-conditioned LS fits w.r.t. L (M90) See Table 2 0.0280 See Table 2
Least squares fit w.r.t. A 0.115A1.218 0.0262 2.0%
Least squares fit w.r.t. CSP 0.135X0.793 0.0255 2.1%
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also important to address. It is possible that the lack of
improvement in using A, L, W, and P, relative to using
A alone, and the lack of improvement using multivari-
ate techniques, could be because of errors in measuring
particle geometries and equivalent masses in the M90
dataset. For example, in M90 the masses are estimated
from drop images by assuming the drops are hemi-
spheres. An average diameter was used for drop images
that are not circular (viewed from above). The fact that
some of the drops were not circular (Fig. 1) suggests
that the contact angles could have also varied, causing
errors in the mass estimates. There is no way to directly
assess the magnitude of this error because individual
drop contact angles were not measured.

However assuming a column, viewed from above, is
lying flat on one side and is solid, the mass can be found
from its length L� and width W� using basic geometry,
where the prime denotes the usual definitions of length
and width for a rectangle. The masses are compared
this way for 17 of the 76 images that M90 classified as
single columns and that appeared to us to be approxi-
mate simple, solid hexagonal columns. The results are
shown in Fig. 6. There is reasonably good correlation in
Fig. 6 between the melted drop masses and the masses
assuming an ideal solid column shape, with about 30%
average error. The error in Fig. 6 is not necessarily all
due to error in the mass estimates. Another source of
error is the estimates of L� and W�. For Fig. 6, L� and
W� were found manually, which is more accurate than
automatic methods but is still subjective.

b. Measurement errors of image parameters

Except where specifically mentioned, L, W, A, and P
were found automatically using CPIview software. Fig-
ures 7a–c show three typical CPI images of crystals col-
lected in clouds, with their perimeters determined au-
tomatically using the CPIview software. The values of
the ratio 2(L � W)/P are also shown. The motivation
for including this ratio in CSP is apparent, because the
smaller this ratio the lower the effective density of the
ice particle. Figure 7d shows a typical image from the
M90 dataset and its perimeter, which was also deter-
mined automatically using CPIview. Because of the dif-

FIG. 6. Scatterplot of the masses derived from the drop images
by M90 vs the masses derived from the ice image assuming a solid
hexagonal column.

TABLE 2. An analysis of M90’s original dataset (630 particles) that was segregated into 17 habit-conditioned subsets. The first column
is the habit class; the second is the number of crystals in the subset; the third shows the exponential relationship derived by linear
regression; the fourth is the difference between that habit class � and the � derived from all the particles; the fifth is the absolute and
percentage uncertainty in � derived from bootstrap analysis.

Crystal type N Equation Difference in � � uncertainty (%)

All 630 0.021L2.0 0.0 0.053 (2.7%)
Elementary needles 16 0.0048L1.8 0.2 0.57 (31%)
Rimed elementary needles 7 0.0059L2.1 0.1 0.65 (32%)
Long columns 64 0.012L1.9 0.1 0.37 (20%)
Rimed long columns 27 0.023L1.8 0.2 0.33 (18%)
Combinations of long columns 62 0.017L1.8 0.2 0.20 (11%)
Rimed combinations of long columns 54 0.025L1.9 0.1 0.14 (7.3%)
Short columns 12 0.064L2.6 0.6 0.61 (23%)
Combinations of short columns 17 0.031L1.9 0.1 1.6 (88%)
Hexagonal plates 30 0.028L2.5 0.5 0.45 (18%)
Radiating assemblages of plates 63 0.019L2.1 0.1 0.16 (7.6%)
Side plane 77 0.021L2.3 0.3 0.13 (5.5%)
Heavily rimed dendritic crystals 20 0.068L2.2 0.2 0.41 (18%)
Fragments of heavily rimed dendritic crystals 39 0.027L1.7 0.3 0.38 (22%)
Aggregates of side planes 35 0.021L2.2 0.2 0.24 (11%)
Aggregates of side planes, bullets, and columns 31 0.022L2.1 0.1 0.23 (11%)
Aggregates of radiating assemblages of plates 30 0.023L1.8 0.2 0.22 (12%)
Aggregates of fragments of heavily rimed dendritic crystals 46 0.034L2.0 0.0 0.20 (10%)
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ferent medium of the M90 data, the perimeters drawn
by CPIview appear to be more convoluted than if they
were drawn manually. Thus, there are errors inherent
in particle geometry estimates in the automated re-
analysis of the M90 dataset. While we are unable to
quantify these errors, they may be significant and could
be responsible for the limited improvement achievable
from this dataset when additional parameters are in-
cluded (sections 3b and 3d).

Also, the orientation of certain crystal types, such as
plates and columns, is not completely random in a petri
dish. Their orientation in an imaging probe may be
random or biased in a different way than in a petri dish.
This fact may imply additional errors in IWC estimates
from imaging probe data using the equations derived
herein, from petri dish images.

5. Conclusions

This study shows that, as expected, using parameters
in addition to L alone yields improved estimates of
particle masses. Using A alone to determine mass yields
the best estimate of all of the individual size parameters
(L, W, A, P) assessed in this study, achieving nearly
50% improvement in rms error over using L alone. The
results are not only significantly better than using L
alone, but are also significantly better than using 17
distinct mass-to-length relationships based on prior
habit classification. It is also shown that most of the
habit-conditioned relationships of M90 are not robust.
Determination of A from the large existing 2D-C and
2D-P datasets is computationally straightforward (be-

cause this is simply the number of occulted pixels),
thereby facilitating reanalysis of these data to improve
IWC determination.

A single parameter combining A, L, W, and P in a
logical combination yielded similar results to using A
alone. It is suggested that the lack of better predictions
using L, W, A, and P versus A alone could be due to
measurement errors in drop masses and ice particle ge-
ometries for this limited dataset. Collection of a larger
dataset of crystal images and melted drops with re-
duced measurement errors is needed. This could re-
solve experimental issues raised in this paper and could
provide considerable additional improvement in the de-
termination of IWC from 2D image data, either by the
techniques presented herein or by facilitating more so-
phisticated multivariate approaches. The improved
dataset should also include particle types representative
of all types of atmospheric ice, in particular cirrus cloud
particles, which are not well represented in the current
dataset.
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